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ABSTRACT -

The electro-optic switching properties of injection-coupled coherent two-
dimensional grating-surface-emitting laser arrays with multiple gain sections
and quantum well active layers are discussed and demonstrated. Within such
an array of injection-coupled grating-surface-emitting lasers, a single gain
section can be operated as intra-cavity saturable loss element that can
modulate the output of the entire array. Experimental results demonstrate
efficient sub-nanosecond switching of high-power grating-surface-emitting laser

arrays by using only one gain section as an intra-cavity loss modulator.
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Diode lasers are attractive for applications as transmitters in free-space
optical communications systems.1 Because of the?g small size and high
efficiency, a significant reduction in the weight of the host satellite for the
transmitter is realized. Since most diode lasers have large angular beam
divergences (> 10°), large collimation telescopes are necessary 1o provide the
appropriate system beam divergence. Therefore any reduction in the angular
beam divergence of the laser transmitter will result in further weight reductions
in the host satellite. In addition, a narrower divergence beam also reduces the
possibilties of interference , jamming, or data interception. For this type of
application, a diode laser transmitter must be developed that has a power
output of 500 mW or more, produces a narrow-divergence diffraction-limited
single lobed far field, operates in a single spectral mode, and maintains both a
stable far-field pattern and spectral output at multi-GHz modulation rates.
Single element diode lasers are limited to operating powers of about 100 mW.
Therefore, suitable coherent diode laser arrays will have to be developed in
order to increase power, and over the last decade this has been an active area
of research.2

Coherent monolithic two-dimensional arrays of injection-coupled grating

surface emitting (GSE) diode lasers represent a new technology that shows
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great promise for generating the high-power narrow-divergence output beams
that are ncessary for applications in optical communications systems as well as
a variety of other optical systems. Already GSE arrays have demonstrated
output powers in excess of 1 W, far-field beam divergences of 1°x 0.01°, and
spectral outputs narrower than 0.25 A.3-4 In this paper, we report on the use of
non-uniform current di%ributions to obtain sub-nanosecond electro-optic
switchring and electro-optic gain in the power current characteristics of an
injection-coupled monolithic array of GSE diode lasers. Experimental results
demonstrate that GSE laser arrays may be efficiently modulated at appropriate
rates for digital communications applications.

- Monolithic two-dimensional GSE diode laser arrays are a class of laser
stl;lctures that consist of many electrically-isolated gain sections that are
tabricated within a network of second order distributed Bragg reflector (DBR)
passive waveguides. An example of a specific monolithic two-dimensional
GSE array is shown in Fig. 1. This stucture has electrically-isolated gain
sections that consist of ten Y-coupled ridge-guided lasers along the lateral
direction. Along the longitudinal direction, adjacent gain sections (groups of ten
Y-coupled ridge-guided laser sections) are connected by second order
distributed Bragg reflector (DBR) passive waveguide sections. These DBR
sections function in a three-fold manner. The second grating order provides
wavelength selective feedback (for wavelengths at or very near the Bragg
condition) necessary to support laser oscillation. In first order, the grating
couples light out normal to the wafer surface. The transmissivity of the DBR
section must be sufficiently large that adjacent gain sections will be injection
coupled. Such stuctures are monolithic, because the incorporation of the
second order DBR sections into the structure makes it possible to fabricate

lasers at the wafer level without having to form cleaved facets as is done in
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conventional edge-emitting diode laser arrays. A graded-index separate
confinement heterostructure single quantum well (GRINSCH-SQW) structure
(nominal layer compositions and dimensions are given in Fig. 1) is common to
both the active gain sections and the passive DBR waveguide sections.3,4 The
GRINSCH-SQW is the active layer for the gain sections and the guide layer for
the passive DBR waveguide sections. Although the unpumped quantum well
in the DBR sections represents a loss, the absorption losses of the quantum
well saturate to low values (<10cm-1) at optical powers of several milliwatts.>
The details of fabricating GSE arrays are given in refereneces 3 and 4.

Since monolithic GSE laser arrays contain multiple gain sections, it
should be possible to modulate the output of an entire GSE array by selectiviey
varying the drive current to a single gain section so that it acts as an intra-cavity
loss element for the entire array. This technique, which is rgj(fgfad to as —
intracavity electroabsorption loss modulation, has been used to demonstrate Q-
switching and bistable switching in edge-emitting diode laser arrays with
quantum well structure active layers® as well as conventional double
heterostructure lasers.”-9 The use of quantum well active layers provide both a
high differential gain and potentially large depth of loss modulation in the active
sections of the GSE array. Both of these conditions are necessary for obtaining
high speed switching and short output pulses.b By choosing the grating period
of the DBR sections of a GSE array so that the operating wavelength is on the
short wavelength side of the gain peak, the magnitude of the loss modulation
and the differential gain can be maximized.!0

The operating wavelength of a grating-surface-emitting laser array is
determined by satisfying the Bragg condition for the grating in the DBR sections:
AGSE = A ne , where AGSE is the operating wavelength of the array, Ais the

grating period, and ne is the effective index of the transverse spatial mode in the
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DBR waveguide. Wavelengths within the reflectivity bandwidth (which usually
corresponds to abouta 5 A bandwidth centered on Agsg) of the DBR section
will be retro-reflected back into the gain sections so that laser oscillation of a
GSE laser array only occurs inside this small bandwidth centered on AGsE.
Therefore, with a knowlege of the gain spectrum and DBR waveguide effective
index it is possible to select a specific operating wavelength by appropriate
choice of the grating period. An example of how the operating wavelength of a
GSE laser array can be set to the short wavelength side of the peak of the gain
spectrum is shown in Fig. 2. Here, the photolluminescence spectrum of the
GRINSCH-single quantum well structure of a 2-dimensional GSE laser array is
shown. The peak of the quantum well photoluminescence spectrum (which is
about 8510 A for the spectrum in Fig. 2) corresponds closely to the peak of the
gain spectrum. Fabry-Perot lasers from this structure had an operating
wavelength of 8570 A. However, the grating period of 2584 A resulted in an
operating wavelength of 8480 A, which is about 30 A to the short wavelength
side of the peak of the photoluminescence.

To investigate the switching properties of injection-coupled GSE laser
arrrays, devices were fabricated with grating periods such that the Bragg
condition was satisfied for wavelengths that were shorter than the peak of the
gain profile. In order to identify those arrays that could be switched by electro-
absorption loss, the power versus current (Pl) characteristics were measured
when only the current to one gain section (usually at or near the middle of the
array) was varied and the currents to all other gain sections were set at the
same value. Figure 3 shows characteristic Pl curves measurement for a such a
GSE array. This particular array consisted of 9 injection-coupled gain sections.
An abrupt turn-on of this array is observed over a significant part of the

operating range.



No hygngsis effects were observed in any of the Pl curves that showed
the sharp turn-on. Such effects are usually seen in the Pl curves of lasers that
are switched by modulation of an intra-cavity saturable loss. However, the
testing of the GSE arrays reported here was all done under pulsed operating
conditions (50 ns pulse width 0.1-2% duty cycle). This was necessary, since the
arrays had to be mounted p-side up in order use the light out-coupled by the
grating. Such transient operating conditions might obscure any hysterysis
effects that might otherwise occur. Nevertheless, the sharp transistion did
exhibit some bistable characteristics. When the current to the center gain
section was tuned near the center of the steep part of the Pl curve, the time-
resolved output (as detected by a PIN diode with 20 ns rise time) was a
superposition of two distinct pulse shapes (operating states) as shown in Fig.4.
As the current to the center gain section was tuned through the transistion to
higher current values, the off-state pulse disappeared and only the on-state
remained. Conversely, as the current was tuned through the transition to lower
currents, the on-state pulse disappeared leaving only the off-state pulse. The
observation of both output pulses in the narrow current range that corresponded
to the transition could be an indication of bistability.

In the sharp turn-on region of the Pl curve, an increase in the current to
the center gain section by about 50 mA produced a change in the power output
of the entire array as high as 400 mW. The array gain sections had a series
resistance of about 10 Ohms so an increase of the electric power of about 25
mW into the array produced 400 mW of optical power. This corresponds to a
differential gain of 12 dB in the conversion of electric power to optical power.
and shows that a GSE array can be modulated efficiently by switching the drive

current to only a small fraction of the array. This is an important consideration
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for high-speed free-space communications systems, because it can reduce the
rf power (and the size of the electronics package) needed to modulate the array.

In order to measure the switching speed between the on and off state of
the array, the arrival time of the pulse to the center gain section was delayed
with respect to the pulses to the other gain sections and the time-resolved light
output was measured using a Si avalanche photodiode with a rise-time of about
200 ps. It was necessary to switch the array in this manner since this array
could only be operated under low duty cycle pulsed conditions with about 50-
100 ns long pulses. Fig. 5 shows the shape of the current pulse that was used
to drive the gain section and the resulting time-resolved optical output pulse of
the array (as measured with the avalanche photodiode). The pulse has a rise
time of 420 ps and is just over 3 ns in duration. A longer fall time of about 1 ns
is observed. This could possibly be due to heating of the array (p-side up
operation) or the transient operating conditions.

The time-averaged far-field output and spectral output were measured
when the array was operated to produce the optical pulse output that is shown
in Fig. 5. These data are shown in Fig. 6. The time-averaged far-field output is
predominantly a single-lobed in the longitudinal direction with an angular beam
divergence which is 0.05° or less (0.03° is resolution of this measurement).
There is significant secondary lobe structure outside the dominant lobe. This is
caused by wafer non-uniformities and surface roughness of the wafer, as
discussed in reference 1. The spectral output (shown on a log intensity scale
with 1 A spectral resolution) is 2 A wide at intensities 30 dB down in intensity
from the peak wavelength with no other side modes observed outside this
bandwidth. The meaured spectral width is broader than the instrument
resolution. Since this array was operated with short pulses (50-100 ns current

pulses with no dc bias) to all gain sections and the spectrum was recorded by



averaging over many pulses, it is not too suprising that some spectral
broadening was observed. While the current pulses are applied to the gain
sections, the carrier density is always in a transient state. In steady-state
operation where a dc bias would be applied to all gain sections, as shown in
Fig. 7, the carrier density would be in a steady-state situation. A capacitively-
coupled rf pulse applied to the center gain section (which is dc biased just
below the transistion as shown in Fig. 6) would switch the array on and off. In
this mode of operation, the total carrier density of the array is always very close
to the threshold value.11 Therefore, electroabsorption loss modulation.of a dc
biased GSE array should exhibit considerably less spectral broadening
because the fluctuations in the carrier density are lower than an array operated
under transient conditions.

In conclusion, electro-optic switching and electro-optic gain
accompanied by fast switching times have been demonstrated in two-
dimensional GSE diode laser arrays. The Pl curve charcteristics and sub-
nanosecond switching properties described above were only observed in GSE
arrays operated at wavelengths that were on the short wavelength side ij"" e
the peak of the gain spectrum. This is strong evidence that within a 2-
dimensional GSE array, selected gain sections (with quantum well active
layers) can be operated as intra-cavity saturable loss elements that efficiently
modulate the output of the entire array at high frequencies. The use of multiple
quantum well structures as the active/waveguide layers in GSE laser arrays
should further improve the modulation and switching characteristics of these
devices.6,10 Along with the high power and low beam divergence output

!

properties, these new results show that coherent GSE arrays have the bt

capability to operate as high-speed transmitters in free-space optical

communication systems.
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Figure Captions

Figure 1: Schematic diagram of a 2-D injection-coupled GSE array with Y-
coupled ridge-guided lasers in the lateral direction. The insets show the lateral
waveguide structure, composition and thicknesses of the wafer structure, and

schematic diagram of the distributed Bragg reflector waveguide sections.

Figure 2: The photoluminescence spectrum of the GRINSCH-single quantum

well active/waveguide layer of a 2D-GSE laser array is shown.

Figure 3: Power versus current curves of a 9x10 GSE array that exhibits
switching characteristics. The current to the center gain element is indicated on
the horizontal axis and the total power output of the array is shown on the
vertical axis. The set current values, |, to the remaining gain sections are

shown on the right next to each curve.

Figure 4: The time-resolved output of the array is shown with the array was

operated in the middle of the steep transition part of the Pl curve.
Figure 5: Both the current pulse and the resulting optical pulse output of the
GSE array are shown. The optical pulse was detected with an avalanche

photodiode which had a rise time of about 200 ps.

Figure 6: The time-averaged far-field and spectral outputs corresponding to the

optical output pulse in Fig. 5 are shown.
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Figure 7: Schematic diagram of steady-state biasing of a GSE array for

operation using intra-cavity electroabsorption loss modulation.
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